Efectos de Bacillus subtilis cepas GBO3 y IN937b en el crecimiento de maíz (Zea mays L.).

Authors

  • Clara Luz Miceli Méndez FACULTAD DE CIENCIAS BIOLOGICAS UNIVERSIDAD DE CIENCIAS Y ARTES DE CHIAPAS Ciudad Universitaria Libramiento Norte Poniente No. 1150 Colonia Lajas Maciel. Tuxtla Gutiérrez, Chiapas. México

DOI:

https://doi.org/10.18387/polibotanica.53.14

Keywords:

Zea mays; Bacillus subtilis; Bacteria promotora de crecimiento vegetal

Abstract

The use of chemical fertilizers for the production of corn (Zea mays L.) generates health risks, interruption of the natural ecological cycle of nutrients, environmental contamination and the destruction of biological communities, therefore, the present research aimed to evaluate the effects of Bacillus subtilis strains GBO3 and IN937b on the growth of maize plants. During the experiment, three inoculations of the strains were carried out, one on the day of sowing, others more at 15 and 30 days later, both strains were tested at concentrations of 1x107 CFU ml and 1x108 CFU, evaluating five treatments, that is, four treatments experimental units and a control, each one with 18 repetitions, using one seed per repetition, for a total of 90 experimental units, the treatments containing the GBO3 strains at 108 CFU / ml and IN937b 107 at CFU / ml of Bacillus subtilis showed the effects more marked in the growth of corn (Zea mays), with a total weight of 11.29 g in both treatments, and 6.58 g in the control treatment, likewise, all the experimental treatments significantly increased biomass and plant development, Kruskal-Wallis (p≤ 0.05), the results of this research showed that the strains have the ability to positively stimulate growth in corn, obtaining better results with GBO3 strains at a concentration of 108 CFU / ml and IN937b at a concentration. on of 107 CFU / ml.

References

Agbodjato, A. N., Noumavo, A. P., Amogou, O., Adoko, M., Dagbenonbakin, G., Falcon-Rodriguez, A., De La Noval Pons, M. B., Adjanohoun, A., & Baba-Moussa, L. (2018). Impact de l’utilisation des Rhizobactéries Promotrices de la Croissance des Plantes (PGPR) en combinaison avec le chitosane sur la croissance et le rendement du maïs (Zea mays L.) sur sol ferralitique au Sud-Bénin. Microbiological Research, 4(0), 395–407.
Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163, 173–181.
Amogou, O., Dagbénonbakin, G., Agbodjato, N. A., Noumavo, P. A., Salami, H. A., Valère, S., Aguegue, R. M., Assogba, S. A., Djihal, K. F., & Adjanohoun, A. (2018). Influence of Isolated PGPR Rhizobacteria in Central and Northern Benin on Maize Germination and Greenhouse Growth. American Journal of Plant Sciences, 9(13), 27775–2793.
Araujo, F. F. (2008). Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton. Ciênc. Agrotec., 32(2), 456–462.
Bakker, P. A. H. M., Pieterse, C. M. J., & van Loon, L. C. (2007). Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology. Phytopathology, 97, 239–243.
Bhardwaj, G., Shah, R., Joshi, B., & Patel, P. (2017). Klebsiella pneumoniae VRE36 as a PGPR isolated from Saccharum officinarum cultivar Co99004. Journal of Applied Biology & Biotechnology, 5(01), 047–052.
Canto-Martín, J. C., Medina-Peralta, S., & Morales Avelino, D. (2004). Efecto de la inoculación con Azospirillum sp. en plantas de chile habanero (Capsicum chinense Jacquin). Tropical and Subtropical Agroecosystems, 4, 21–27.
Choudhary, D. K., Sharma, K. P., & Gaur, R. K. (2011). Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett, 33, 1905–1910.
Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.
Espinosa, J., & García, J. (2009). Herramientas para mejorar la eficiencia de uso de nutrientes en maíz. En J. Espinosa & F. García (eds), Memorias del Simposio “Uso eficiente de Nutrientes.” 49–56.
García-olivares, J., Moreno-Medina, V., Rodriguez-Luna, I., Mendoza-Herrera, A., & Mayek-Pérez, N. (2007). Efecto de cepas de Azospirillum brasilense en el crecimiento y rendimiento de maíz. Fitotec, 30(3), 305–310.
Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion. Annals of Microbiology, 60, 579–598.
Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.
Kokalis-Burelle, N., Kloepper, J., & Reddy, M. (2005). Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Applied Soil Ecology, 31, 91–100.
Lacerda, A. U, de C., Portella, C., Ramos, M. R., Ribeir, G. E., & Souto-Maior, A. M. (2010). Sporulation and Production of Bioactive Compounds by Bacillus subtilis R14. Braz. Arch. Biol. Technol, 53(3), 643–652.
Lee, K., Kamala-Kannan, S., Han, S., Seong, C., & Lee, G. . (2008). Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microb Biotechnol, 24, 1139–1145.
Marques, A., Pires, C., Moreira, H., Rangel, A., & Castro, P. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42(8), 1229–1235.
Méndez, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. Fems Microbiology Reviews, 37, 634–663.
Nadeem, S. M., Ahmad, M., Ahmad, Z. Z., Javaid, A., & Ashraf, M. (2013). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448.
Park, J.-W., Lee, S.-W., & Balaraju, K. (2013). Disease suppression and growth promotion in cucumbers induced by integrating PGPR agent Bacillus subtilis strain B4 and chemical elicitor ASM. Crop Protection, 54, 199–205.
Pedraza, R. O. (2008). Recent advances in nitrogen-fixing acetic acid bacteria. International Journal of Food Microbiology, 125, 25–35.
Raghavendra, J., & McSpadden-Gardener, B. (2005). Identification and Characterization of Novel Genetic Markers Associated with Biological Control Activities in Bacillus subtilis. The American Phytopathological Society, 96(2), 145–154.
Reyes, I., Alvarez, L., El-Ayoubi, H., & Valery, A. (2008). Selección y evaluación de rizobacterias promotoras del crecimeinto en pimientón y maíz. Bioagro, 20(1), 37–48.
Ryu, C.-M., Hu, C.-H., Reddy, M., & Kloepper, J. (2003). Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 160, 413–420.
Ryu, C. M., John, F. M., Reddy, M. S., & Kloepper, J. W. (2007). A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas sysringae and cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J. Micro. Biotech, 17, 280–286.
Sánchez-López, D. B., Gómez-Vargas, R. M., Garrido-Rubiano, M. F., & Bonilla-Buitrago, R. R. (2012). Inoculación con bacterias promotoras de crecimiento vegetal en tomate bajo condiciones de invernadero. Revista Mexicana de Ciencias Agrícolas, 3(7), 1401–1405.
Siddiqui, Z., Antoun, H., & Prévost, D. (2006). Ecology of Plant Growth Promoting Rhizobacteria, PGPR: Biocontrol and Biofertilization. Springer Netherlands, 1–38.
Wang, X. Q., Zhao, D. L., Shen, L. L., Jing, C. L., & Zhang, C. S. (2018). Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease. Springer Nature Singapore, 0(0), 225–250.
Xie, X., Zhang, H., & Pare, P. (2009). Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signaling & Behavior, 4(10), 948–953.

Published

2022-02-15

Issue

Section

Articles

How to Cite

Efectos de Bacillus subtilis cepas GBO3 y IN937b en el crecimiento de maíz (Zea mays L.). (2022). POLIBOTANICA, 1(53). https://doi.org/10.18387/polibotanica.53.14