| CHARACTERIZATION OF SEEDS AND PLANT DEVELOPMENT OF Oenothera rosea L'Her. ex Ait IN GREENHOUSE

Authors

  • Cecilia Beatriz Peña Colegio de Postgraduados

Keywords:

crecimiento vegetativo, inflorescencias, latencia, semillas silvestres, yemas florales.

Abstract

Oenothera rosea L´Hér. ex Ait. is a wild plant of the Onagraceae family. There is interest in its cultivation due its therapeutic properties. The objective in this study was to characterize O. rosea seeds and their plant development in a greenhouse environment, up to the end of their reproductive stage. The tested hypothesis was that regardless of the collection site and seed size variability, plants of O. rosea actively grow when developed under sheltered conditions. The assessed seeds were collected from four sites from the state of Veracruz. The experimental design consisted in generalized randomized blocks, with 10 repetitions (15 seeds per experimental unit) to assess germination and seedlings emergence, and four plants per sampling, every 10 days, for 110 days to evaluate growth and biomass of the plant structures. The plants were grown, in 500 mL containers, in peat moss, in a greenhouse, from July to September 2018. The mean seed biomass ranged between 0.0027 and 0.0091 g. Between 10 and 70% of seeds did not germinate depending on the seed size and the collection site. After 110 days after sowing plants originated from large seeds were higher (up to 35%), produced more flower buds (60%), number of mature capsules (double) and longer roots (27.2%) compared to plants from small seed plants. In contrast, stem diameter (at substrate height) and leave number, width and length were not related to the seed size. Oenothera rosea plants develop and grow vigorously in greenhouse conditions; all plant tissues are available 100 days after plant cultivation.

Author Biography

  • Cecilia Beatriz Peña, Colegio de Postgraduados
    SNI III,  Profesora Investigadora Titular, Posgrado en Botánica, Colegio de Postgraduados

References

Al-Kataki G. N. 1998. Seed size and water potential effects on water uptake, germination and growth of lentil. J. Agron. Crop Sci. 181: 237-242.

Almora-Pinedo Y., Arroyo-Acevedo J., Herrera-Calderon O., Chumpitaz-Cerrate V., Hañari-Quispe R., Tinco-Jayo A., Franco-Quino C., Figueroa-Salvador L. 2017. Preventive effect of Oenothera rosea on N-methyl-N-nitrosourea- (NMU) induced gastric cancer in rats. Clin. Exp. Gastroenterol. 10: 327–332.

Brakke M. P., Gardner E. B. 1987. Juvenile growth in pigeopea, soybean, and cowpea in relation to seed and seedling characteristics. Crop Sci. 27: 311—316.

Brunner I., Herzog C., Dawes M. A., Arend M., Sperisen C. 2015. How tree roots respond to drought. Front. Plant Sci. 6: 1-16.

Calva-Candelaria N., Meléndez-Camargo M. E., Montellano-Rosales H., Estrada-Pérez A. R., Rosales-Hernández M. C., Fragoso-Vázquez M. J., Martínez-Archundia M., Correa-Basurto J., Márquez-Flores J. K. 2018. Oenothera rosea L´Hér. ex Ait attenuates acute colonic inflammation in TNBS-induced colitis model in rats: in vivo and in silico myeloperoxidase role. Biomed. Pharmacotherapy 108: 852-864.

Erskine W. 1996. Seed-size effects on lentil (Lens culinaris) yield potential and adaption to temperature and rainfall in West Asia. J. Agric. Sci. 126: 335— 341.

Espinosa G. F., Sarukhán, J. 1997. Manual de malezas del Valle de México. Claves, descripciones e ilustraciones. Universidad Nacional Autónoma de México. Fondo de Cultura Económica. México, D. F. 407 pp.

Fan C., Yu S., Wang C., Xing Y. 2009. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor. Appl. Genet. 118: 465–472.

Gan Y., Stobbe E. H. 1995. Effect of variations in seed size and planting depth on emergence, infertile plants, and grain yield of spring wheat. Can. J. Plant Sci. 75: 565-570.

García E .1988. Modificaciones al sistema de clasificacio´n clima ´tica de Ko¨ppen (para adaptarlo a las condiciones de la República Mexicana), 4a edn. UNAM, México.

Gómez-Flores R., Reyna-Martínez R., Tamez-Guerra P., Quintanilla-Licea R. 2012. Antibacterial activity of Oenothera rosea (L ’Hér) leaf extracts. Br. J. Med. Med. Res. 2: 396–404.

Gómez J. M., Husband B. 2004. Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 58: 71–80.

ISTA. International Seed Testing Association (ISTA). 2005. International rules for seed testing. Seed Sci. Tech. 27 (suppl):

Jha B. B., Sinha S. K., Singh C. N. 1985: Effect of seed size on yield in wheat. Seed Res. 13: 24-27.

Kesavan M., Song J. T., Seo H. S. 2013. Seed size: a priority trait in cereal crops. Physiol. Plant. 147: 113–120.

Kitajima K., Fenner M. 2000. Ecology of seedling regeneration. In: Fenner M. (Ed.). Seeds: ecology of regeneration in plant communities. Wallingford, UK: CABI Publishing, pp. 331–360.

Kitajima K., Myers J. A. 2008. Seedling ecophysiology: strategies towards achievement of positive net carbon balance. In: Leck M. A., Parker V. T., Simpson R. L. (Eds). Seedling ecology and evolution. Cambridge University Press, Cambridge, UK. Pages 172–188.

Li N., Li Y. 2015. Maternal control of seed size in plants. J. Exp. Bot. 66: 1087–1097

Metz J., Liancourt P., Kigel J., Harel D., Sternberg M., Tielbo K. 2010. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 98: 697–704.

Mian M. A. R., Nafziger E. D. 1994. Seed size and water potential effects on germination and seedling growth of winter wheat. Crop Sci. 34: 169—171.

Moles A. T., Ackerly D. D., Webb C. O., Tweddle J. C., Dickie J. B., Westoby M. 2005. A brief history of seed size. Science 307: 576–580.

Pacala S. W., Rees M. 1998. Models suggesting field experiments to test two hypotheses explaining successional diversity. Amer. Naturalist 152: 729–737.

Peña-Valdivia C. B., Aguirre-Rivera J. R., Arroyo-Peña V. B. 2012. El frijol: Síndrome de domesticación. Editorial del Colegio de Postgraduados. México. 198 p.

Pérez M. C., Hernández L. A., González C. F. V., García de los Santos G., Carballo C. A., Vásquez R. T. R., Tovar G. M. R. 2006. Tamaño de semilla y relación con su calidad fisiológica en variedades de maíz para forraje. Agric. Téc. Méx. 32: 341-352.

Poorter L., Wright S. J., Paz H., Ackerly D. D., Condit R., Ibarra-Manríquez G., Harms K. E., Licona J. C. 2008. Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89: 1908–1920.

Radchuk V, Borisjuk L. 2014. Physical, metabolic and developmental functions of the seed coat. Front. Plant Sci. 5: 510.

Rees M., Venable D. L. 2007. Why do big plants make big seeds? J. Ecol. 95: 926–936.

Rubio de Casas R., Willis C. G., Pearse W. D., Baskin C. C., Baskin J. M., Cavender-Bares J. 2017. Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the legumes. New Phytol. 214: 1527–1536.

Rzedowski J. 1978. Vegetación de México. Limusa, México, 432 p.

Rzedowski, J., de Rzedowski G. C. 1957. Notas sobre la flora y la vegetación del estado de San Luis Potosí, V. La vegetación a lo largo de la carretera San Luis Potosí-Río Verde. Acta Cient. Potos. 1: 7-68.

Turnbull L. A., Philipson C. D., Purves D. W., Atkinson R. L., Cunniff J., Goodenough A., Hautier Y., Houghton J., Marthews T. R., Osborne C. P., Paul-Victor C., Rose K. E., Saner P., Taylor S. H., Woodward F. I., Hector A., Rees M. 2012. Plant growth rates and seed size: a re-evaluation. Ecology 93: 1283–1289.

Venable D. L., Rees M. 2009. The scaling of seed size. J. Ecol. 97: 27–31.

Villarreal Q. J. A. 1983. Malezas de Buenavista saltillo. UAAAN. Primera edición. Saltillo, Coahuila. 269 p.

Villaseñor-Ríos J. L., Espinosa-García F. J. 1998. Catálogo de malezas de México. Fondo de Cultura Económica. 448 p.

White I W., Singh S. P., Pino C., Rios M. J., Buddenhagen I. 1992: Effect of seed size and photoperiod response on crop growth and yield of common bean. Field Crops Res. 28: 295—307.

Published

2020-10-04

Issue

Section

Articles

How to Cite

| CHARACTERIZATION OF SEEDS AND PLANT DEVELOPMENT OF Oenothera rosea L’Her. ex Ait IN GREENHOUSE. (2020). POLIBOTANICA, 1(50). https://www.polibotanica.mx/index.php/polibotanica/article/view/561