Growth of Laelia autumnalis and Encyclia cordigera seedlings as a function of sucrose and activated charcoal concentration

Authors

  • Marcela Cabañas Rodríguez Universidad Autonoma del Estado de Morelos
  • María Andrade Rodríguez Universidad Autonoma del Estado de Morelos
  • Oscar Gabriel Villegas Torres Universidad Autonoma del Estado de Morelos
  • Iran Alia Tejacal Universidad Autonoma del Estado de Morelos
  • Porfirio Juarez López Universidad Autonoma del Estado de Morelos
  • José Antonio Chávez García Universidad Autonoma del Estado de Morelos

DOI:

https://doi.org/10.18387/polibotanica.61.13

Keywords:

orchids, carbohydrates, growth.

Abstract

In vitro culture uses different components to improve plant growth; among them, the addition of different concentrations of sucrose and activated charcoal to the culture media has favored the growth of many orchid species. The objective of the research was to evaluate the effect of three concentrations of sucrose and activated charcoal on the in vitro culture of seedlings Laelia autumnalis and Encyclia cordigera was evaluated to determine the most suitable for growth in each species. The macro and micronutrients of the Murashige and Skooh (1962) medium were used, supplemented with 0.5 mg L-1 of thiamine HCI, 100 mg L-1 of myoinositol and three concentrations of sucrose (15, 30 and 45 g L-1) and activated charcoal (0, 1 and 3 g L-1). A completely randomized experimental design with ten repetitions was used. In L. autumnalis, 45 g of sucrose and 1 g of activated charcoal generated the best results for plant height (31.97 mm), leaf length (13.44 mm) and roots (8.63 cm), plant and root dry matter (6.57 and 2.65 mg, respectively). Similarly In E. cordigera, 45 g of sucrose and 3 g of activated charcoal promoted the plant highest (6.06 mm), number (5.78) and length of leaf (21.54 mm), number of roots (8.02), protocorm diameter (3.21 mm), plant and roots dry matter (27.78 and 52.92 mg, respectively). The plants were smaller in media without activated charcoal.

References

Al-Khateeb, A. A. (2008). Regulation of in vitro bud formation of date palm (Phoenix dactylifera L.) cv. Khanezi by different carbon sources. Bioresource Technology, 99, 6550-6555. https://doi.org/10.1016/j.biortech.2007.11.070

Baskaran, P., & Jayabalan, N. (2005). Role of basal media, carbon sources and growth regulators in micropropagation of Eclipta alba – a valuable medicinal herb. Current Applied Science and Technology, 5(2), 469-482.

de Melo Ferreira, W., De Vasconcelos, M. C., Silva, C. C. N., de Oliveira, H. R., & Suzuki, R. M. (2017). Asymbiotic germination, multiplication and development of Alatiglossum fuscopetalum (Orchidaceæ) as affected by culture medium, sucrose and growth regulators. Iheringia – Série Botánica, 72(1), 57-65. https://doi.org/10.21826/2446-8231201772106

DOF. (2019). Diario Oficial de la Federación. Modificación del anexo normativo III, lista de especies en riesgo de la Norma Oficial Mexicana NOM-059-SEMARNAT-2010, protección ambiental-Especies nativas de México de la flora y fauna silvestre-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo, publicada.

Endres Júnior, D., Sasamori, M. H., & Droste, A. (2014). In vitro propagation of Anathallis adenochila (Loefgr.) F. Barros (Orchidaceae), a species endemic to southern and southeastern Brazil. Acta Botanica Brasilica, 28, 489-494. https://doi.org/10.1590/0102-33062014abb3158

Hagsater, E. & Salazar, G. A. (1990). Icones orchidacearum. Fascicle I. Orchids of Mexico Part, 1.

Halbinger, F. & Soto, M. (1997). Laelias of Mexico. Herbario AMO, Orquídea (México, DF), 15,160 p.

Hernández-Muñoz, S., Pedraza-Santos, M. E., Morales-García, J. L., Guillén-Andrade, H., López, P. A., & Téllez-Velasco, M. A. A. (2013). Phenotypic characterization of Mexican orchid laelia autumnalis. Acta Horticulturae, 97: 254-252. https://doi.org/10.17660/ActaHortic.2013.977.28

Huh, Y. S., Lee, J. K., Nam, S. Y., Hong, E. Y., Paek, K. Y., & Son, S. W. (2016). Effects of altering medium strength and sucrose concentration on in vitro germination and seedling growth of Cypripedium macranthos Sw. Journal of Plant Biotechnology, 43(1), 132-137. https://doi.org/10.5010/JPB.2016.43.1.132

Javed, F., & Ikram, S. (2008). Effect of sucrose induced osmotic stress on callus growth and biochemical aspects of two wheat genotypes. Pakistan Journal of Botany, 40(4), 1487-1495.

Koene, F. M., Amano, É., & Ribas, L. L. F. (2019). Asymbiotic seed germination and in vitro seedling development of Acianthera prolifera (Orchidaceae). South African Journal of Botany, 121, 83-91. https://doi.org/10.1016/j.sajb.2018.07.019

Lima, B. V., Santos, A. F., Inokuti, E. M., Guimarães, C. M., da Silva, R. V., Brito, I. B., & Barreto, R. W. (2024). Cultivo seminífero in vitro de Cyrtopodium cardiochilum: influência de concentrações de carvão ativado, sacarose e sais do meio Suprimento (S). Caderno Pedagógico, 21(5), e4050. https://doi.org/10.54033/cadpedv21n5-105

Lunn, J. E., Delorge, I., Figueroa, C. M., Van Dijck, P., & Stitt, M. (2014). Trehalose metabolism in plants. The Plant Journal, 79(4), 544-567. https://doi.org/10.1111/tpj.12509

Martin, T., Frommer, W. B., Salanoubat, M., & Willmitzer, L. (1993). Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. The Plant Journal, 4(2), 367-377. https://doi.org/10.1046/j.1365-313X.1993.04020367.x

Mora-Cruz, Y., López-Peralta, M. C. G., Hernández-Meneses, E., & Cruz-Huerta, N. (2023). Regeneración in vitro de plantas de Prosthechea vitellina (Lindley) WE Higging por organogénesis directa. Revista Fitotecnia Mexicana, 46(1), 33-40. https://doi.org/10.35196/rfm.2023.1.33

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and biossays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Pan, M. J., & Staden, J. V. (1998). The use of charcoal in in vitro culture - A review. Plant Growth Regulation, 26, 155-163. https://doi.org/10.1023/A:1006119015972

Pedroza-Manrique, J. A. (2009). Efecto del carbón activado, ácido indolacético (AIA) y bencil amino purina (BAP) en el desarrollo de protocormos de Epidendrum elongatum Jacq bajo condiciones in vitro. Revista Colombiana de biotecnología, 11(1), 17-32.

Ramírez, M., Niño, S., & Berrío, T. (2016). Anatomía de la raíz de Encyclia cordigera (Kunth) Dressler (Orchidaceae). Revista Unellez de Ciencia y Tecnología, 34, 58-61.

Rittirat, S., Thammasiri, K., & Te-chato, S. (2012). Effect of media and sucrose concentrations with or without activated charcoal on the plantlet growth of P. cornu-cervi (Breda) Blume & Rchb.f. Journal of Agricultural Technology, 8(6): 2077-2087.

Rohmah, K. N., & Taratima, W. (2021). Effective Protocol for Rapid and Mass Micropropagation of Cymbidium aloifolium (L.) Sw. Protocorms Using Different Carbohydrate and Plant Growth Regulator. In Research Article Science Technology and Engineering Journal (Vol. 7, Issue 2).

Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. In Annual Review of Plant Biology, 57(1), 675-709. https://doi.org/10.1146/annurev.arplant.57.032905.105441

Salazar, M. S. A., Amaya N., A. Z. & Barrientos R., F. (2013). Evaluación de diferentes medios de cultivo in vitro en el desarrollo de híbridos de Phalaenopsis (Orchidaceae). Revista Colombiana de Biotecnología, 15(2): 97-105. https://doi.org/10.15446/rev.colomb.biote.v15n2.41268

Sedano, C. G., Manzo, G. A., Roldán, H. R., & Castellanos, J. A. (2015). Propagación in vitro de orquídeas y otras ornamentales. Revista Mexicana de Ciencias Agrícolas, 1, 451-456.

Sharry, S. E., Adema, M., & Abedini, W. (2015). Plantas de probeta: Manual para la propagación de plantas por cultivo de tejidos in vitro. Universidad Nacional de la Plata. Editorial de la Universidad de la Plata. 240 p.

Sipayung, P., Matanari, J., Lafau, M. B., Sulastri, Y. S., Ginting, B. B., Sihombing, D. R., Pandiangan, M., & Giawa, T. (2018). The effect of activated charcoal dose and benzyl amino purine concentration on the growth of orchid plantlets in murashige and skoog media in vitro. Earth and Environmental Science, 205(1). https://doi.org/10.1088/1755-1315/205/1/012025

Thomas, T. D. (2008). The role of activated charcoal in plant tissue culture. In Biotechnology Advances, 26(6), 618-631. https://doi.org/10.1016/j.biotechadv.2008.08.003

Zahara, M., Datta, A., Boonkorkaew, P., & Mishra, A. (2017). The effects of different media, sucrose concentrations and natural additives on plantlet growth of Phalaenopsis hybrid “pink.” Brazilian Archives of Biology and Technology, 60. https://doi.org/10.1590/1678-4324-2017160149

1254

Downloads

Published

2026-01-26

How to Cite

Growth of Laelia autumnalis and Encyclia cordigera seedlings as a function of sucrose and activated charcoal concentration. (2026). POLIBOTANICA, 61. https://doi.org/10.18387/polibotanica.61.13