Vegetative propagation of Salvia elegans Vahl grown at different light intensities and evaluation of its anti-inflammatory effect.

Authors

DOI:

https://doi.org/10.18387/polibotanica.59.11

Keywords:

Lamiaceae, Growth, Inflammation

Abstract

The Salvia species have antioxidant and nootropic properties, attributed to different secondary metabolites. Propagation generates new individuals from the buds of a plant. We evaluated the effect of light on the morphology of propagated plants and measured its anti-inflammatory effect. Apical buds of Salvia elegans were propagated under two light conditions: C1= 13.91 and C2= 4.94 (uM photons-cm2-sec). Growth and development (stomatal density, leaf area and color) were evaluated; with the plants obtained from both conditions, hydroalcholic extract was prepared and by thin layer chromatography, the presence of groups of metabolites was detected. The anti-inflammatory activity was measured in the TPA-induced local edema assay. The highest growth and stomatal density of leaves was in the C1 condition, mainly on the upper rather than on the underside.  Leaf color, a light-sensitive parameter, showed differences between C1 and C2, in which oleanolic and ursolic acid were detected; but only C2 showed flavonoids. The C1 extract of aerial parts and roots had a greater pharmacological effect than C2. Plants produced by hydroponics in C1 showed the best growth, development and anti-inflammatory effect.

 

References

1. Abdollahi-Ghehi, H., Sonboli, A., Ebrahimi, S. N., Esmaeili, M. A., & Mirjalili, M. H. (2019). Triterpenic Acid Content and Cytotoxicity of Some Salvia Species From Iran. Natural Product Communications, 14(5), 1934578X1984272. https://doi.org/10.1177/1934578X19842722
2. Aggarwal, A., & Mathur, A. (2020). Nexus between light and culture media on morphogenesis in Bacopa monnieri and saponin yield thereof. Heliyon, 6(10), e05245. https://doi.org/10.1016/j.heliyon.2020.e05245
3. Argueta, A., Asseleih, L. M., & Rodarte García, M. E. (1994). Atlas de las plantas de la medicina tradicional mexicana (Primera Edición). Instituto Nacional Indigenista.
4. Aydoğmuş, Z., Yeşİlyurt, V., & Topcu, G. (2006). Constituents of Salvia microphylla. Natural Product Research, 20(8), 775–781. https://doi.org/10.1080/14786410500462843
5. Bajalan, I., Mohammadi, M., Alaei, M., & Pirbalouti, A. G. (2016). Total phenolic and flavonoid contents and antioxidant activity of extracts from different populations of lavandin. Industrial Crops and Products, 87, 255–260. https://doi.org/10.1016/j.indcrop.2016.04.059
6. Bayat, H., & Moghadam, A. N. (2019). Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiologiae Plantarum, 41(9), 149. https://doi.org/10.1007/s11738-019-2942-6
7. Dayani, S., & Sabzalian, M. R. (2016). Production of secondary metabolites in medicinal plants through hydroponic systems. In Controlled environment agriculture. (pp. 33–51). Nova Science Publishers, Inc.
8. Francisco-Nava, J. J., Jiménez-Aparicio, A. R. , De Jesús-Sánchez, A., Arenas-Ocampo, M. L., Ventura-Zapata, E., & Evangelista-Lozano, S. (2011). Estudio de la morfología y aclimatación de plantas de Laella eyermaniana RCHB. f. generadas in vitro. Polibotánica, 32, 107–117.
9. Gautam, R. D., Kumar, A., Kumar, R., Chauhan, R., Singh, S., Kumar, M., Kumar, D., Kumar, A., & Singh, S. (2021). Clonal Propagation of Valeriana jatamansi Retains the Essential Oil Profile of Mother Plants: An Approach Toward Generating Homogenous Grade of Essential Oil for Industrial Use. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.738247
10. GAY, A. P., & HURD, R. G. (1975). THE INFLUENCE OF LIGHT ON STOMATAL DENSITY IN THE TOMATO. New Phytologist, 75(1), 37–46. https://doi.org/10.1111/j.1469-8137.1975.tb01368.x
11. González-Chávez, M. M., Ramos-Velázquez, C. S., Serrano-Vega, R., Pérez-González, C., Sánchez-Mendoza, E., & Pérez-Gutiérrez, S. (2017). Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS. Pharmaceutical Biology, 55(1), 1467–1472. https://doi.org/10.1080/13880209.2017.1305423
12. Gudoityte, E., Arandarcikaite, O., Mazeikiene, I., Bendokas, V., & Liobikas, J. (2021). Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. International Journal of Molecular Sciences, 22(9), 4599. https://doi.org/10.3390/ijms22094599
13. Herrera-Ruiz, M., García-Beltrán, Y., Mora, S., Díaz-Véliz, G., Viana, G. S. B., Tortoriello, J., & Ramírez, G. (2006). Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. Journal of Ethnopharmacology, 107(1), 53–58. https://doi.org/10.1016/j.jep.2006.02.003
14. Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil: Vol. C347 rev 1950 (Circular-347). Berkeley, Calif. : College of Agriculture, University of California.
15. Husin, Z. Bin, Shakaff, A. Y. B. Md., Aziz, A. H. B. A., & Farook, R. B. S. M. (2012). Feasibility Study on Plant Chili Disease Detection Using Image Processing Techniques. 2012 Third International Conference on Intelligent Systems Modelling and Simulation, 291–296. https://doi.org/10.1109/ISMS.2012.33
16. Ikeda, Y., Murakami, A., & Ohigashi, H. (2008). Ursolic acid: An anti‐ and pro‐inflammatory triterpenoid. Molecular Nutrition & Food Research, 52(1), 26–42. https://doi.org/10.1002/mnfr.200700389
17. Jiménez–Aparicio, A., & Gutiérrez, G. (2000). Propiedades ópticas: color. En: Métodos para evaluar propiedades físicas en la industria de alimentos. (J. Alvarado, Ed.). Editorial Acribia,.
18. Jiménez-Ferrer, E., Hernández Badillo, F., González-Cortazar, M., Tortoriello, J., & Herrera-Ruiz, M. (2010). Antihypertensive activity of Salvia elegans Vahl. (Lamiaceae): ACE inhibition and angiotensin II antagonism. Journal of Ethnopharmacology, 130(2), 340–346. https://doi.org/10.1016/j.jep.2010.05.013
19. Kalaycıoğlu, Z., Uzaşçı, S., Dirmenci, T., & Erim, F. B. (2018). α-Glucosidase enzyme inhibitory effects and ursolic and oleanolic acid contents of fourteen Anatolian Salvia species. Journal of Pharmaceutical and Biomedical Analysis, 155, 284–287. https://doi.org/10.1016/j.jpba.2018.04.014
20. Karpiński, T. M. (2020). Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules, 10(1), 103. https://doi.org/10.3390/biom10010103
21. Kozłowska, W., Matkowski, A., & Zielińska, S. (2022). Light Intensity and Temperature Effect on Salvia yangii (B. T. Drew) Metabolic Profile in vitro. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.888509
22. Lake, J. A., Woodward, F. I., & Quick, W. P. (2002). Long‐distance CO2 signalling in plants. Journal of Experimental Botany, 53(367), 183–193. https://doi.org/10.1093/jexbot/53.367.183
23. Lin, K.-H., Lin, T.-Y., Wu, C.-W., & Chang, Y.-S. (2021). Protective Effects of Salicylic Acid and Calcium Chloride on Sage Plants (Salvia officinalis L. and Salviaelegans Vahl) under High-Temperature Stress. Plants, 10(10), 2110. https://doi.org/10.3390/plants10102110
24. Maggini, R., Tzortzakis, N., & Currey, C. J. (2022). Editorial: Soilless Culture for Vegetative Biomass Production and Specialized Metabolites: Medicinal, Aromatic, and Edible Plants. Frontiers in Plant Science, 13, 887487. https://doi.org/10.3389/FPLS.2022.887487/BIBTEX
25. Martínez-Gordillo, M., Bedolla-García, B., Cornejo-Tenorio, G., Fragoso-Martínez, I., García-Peña, M. del R., González-Gallegos, J. G., Lara-Cabrera, S. I., Zamudio, S., Martínez-Gordillo, M., Bedolla-García, B., Cornejo-Tenorio, G., Fragoso-Martínez, I., García-Peña, M. del R., González-Gallegos, J. G., Lara-Cabrera, S. I., & Zamudio, S. (2017). Lamiaceae de México. Botanical Sciences, 95(4), 780–806. https://doi.org/10.17129/BOTSCI.1871
26. Martínez-Hernández, G. B., Jiménez-Ferrer, E., González-Cortazar, M., Román-Ramos, R., Tortoriello, J., Vargas-Villa, G., & Herrera-Ruiz, M. (2021). Antidepressant and anxiolytic compounds isolated from Salvia elegans interact with serotonergic drugs. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394(12), 2419–2428. https://doi.org/10.1007/s00210-021-02155-6
27. Mathias-Rettig, K., & Ah-Hen, K. (2014). El color en los alimentos un criterio de calidad medible. Agro Sur, 42(2), 57–66. https://doi.org/10.4206/agrosur.2014.v42n2-07
28. Mendoza, F., Dejmek, P., & Aguilera, J. M. (2006). Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology, 41(3), 285–295. https://doi.org/10.1016/j.postharvbio.2006.04.004
29. Paje, L. A., Choi, J., Lee, H.-D., Kim, J., Yu, A. R., Bae, M.-J., Geraldino, P. J. L., & Lee, S. (2022). Phenolic acids and flavonoids from Salvia plebeia and HPLC-UV profiling of four Salvia species. Heliyon, 8(3), e09046. https://doi.org/10.1016/j.heliyon.2022.e09046
30. Pereira, O., Catarino, M., Afonso, A., Silva, A., & Cardoso, S. (2018). Salvia elegans, Salvia greggii and Salvia officinalis Decoctions: Antioxidant Activities and Inhibition of Carbohydrate and Lipid Metabolic Enzymes. Molecules, 23(12), 3169. https://doi.org/10.3390/molecules23123169
31. Ramírez-Zea, G., Chávez-Servia, J. L., & Archundia-Garduño E. (2016). Salvias del Estado de México, una perspectiva general (Primera edición). Secretaría de Desarrollo Agropecuario.
32. Ricciardi, G., & Ricciardi, A. (2000). Efecto de las variaciones estacionales sobre la composición química del aceite esencial de plantas de “Salvia morada” de Sáenz Peña (Chaco). Comunicaciones Científicas y Tecnológicas UNNE; Exactas, , 11.
33. Rodrigues, M. R. A., Kanazawa, L. K. S., Neves, T. L. M. das, Silva, C. F. da, Horst, H., Pizzolatti, M. G., Santos, A. R. S., Baggio, C. H., & Werner, M. F. de P. (2012). Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. Journal of Ethnopharmacology, 139(2), 519–526. https://doi.org/10.1016/j.jep.2011.11.042
34. Schanda, J. (2007). Colorimetry: Understanding the CIE System. Wiley.
35. Thomas, P. W., Woodward, F. I., & Quick, W. P. (2004). Systemic irradiance signalling in tobacco. New Phytologist, 161(1), 193–198. https://doi.org/10.1046/j.1469-8137.2003.00954.x
36. Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C., & Zhang, S. (2007). Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis. The Plant Cell, 19(1), 63–73. https://doi.org/10.1105/tpc.106.048298
salvia

Downloads

Published

2024-12-02

How to Cite

Vegetative propagation of Salvia elegans Vahl grown at different light intensities and evaluation of its anti-inflammatory effect. (2024). POLIBOTANICA, 59. https://doi.org/10.18387/polibotanica.59.11